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Recognition Failure and the Composite Memory Trace in CHARM

Janet Metcalfe
Dartmouth College

The relation between recognition and recall, and especially the orderly recognition-failure Junction
relating recognition and the recognizability of recallable words, was investigated using a composite
holographic associative recall-recognition memory model (CHARM). Ten series of computer
simulations are presented. Analysis of CHARM and comparisons to other models indicate that the
recognition-failure function depends on (a) both recognition and recall being similar (convolution-
correlation) processes such that an interpretable representation is retrieved in both tasks and (b) the
information underlying both recall and recognition being stored in the same composite memory
trace. It is of considerable interest that constructs central to the distributed nature of CHARM are
responsible for the modeFs adherence to the recognition-failure function.

There are few paradigms within the study of human memory
in which the data are so orderly that they could be considered to
be determined by a psychological law. The recognition-failure
paradigm, however, provides one such instance (Gardiner,
1988,1989; Gardiner, Kaminska, Java, Clarke, & Mayer, 1990;
Jones 1983; Jones & Gardiner, 1990; Nilsson, Dinniwell, &
Tulving, 1987; Nilsson, Law, & Turving, 1988). This paradigm is
one in which subjects are presented with a list of item pairs to
study in such a way that when later given one item as the cue,
they will be able to recall the other. In some cases, the members
of the pair are simple words, such as "glass-VASE"; in other cases,
the cue may be a phrase or sentence:—"A firm and friendly
touch—HANDSHAKE" or "He made scientists work harder—
ALFRED NOBEL." Before being asked to recall the target items
(here presented in capitals), subjects are first requested to recog-
nize them. The question of interest is whether people who are
able to recall a particular item as the target to a specific cue are
also necessarily able to recognize that target as having been
presented in the list. Our intuitions suggest this to be the case
and that there should be a strong or perhaps even an absolute
dependence relation between recall of an item and recognition
of that item—recallable items should also be recognizable. Rec-
ognition failure of recallable items should not occur, or at least
should be a rare event.

This prediction was made more explicit in models that postu-
lated that recall was a two-stage process in which subjects first
generated response possibilities and then recognized the
correct alternative from among those generated (Bahrick. 1979;
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Kintsch, 1978; Martin, 1975). The strong dependence expected
intuitively and as a result of such models of recall has failed to
appear in experiments that investigated this issue. Gardiner
and Nilsson (1990) reviewed the results of 42 published articles
yielding a total of 272 different observations. The empirically
found relation between recognition and recall is one of near,
but not total, independence. There is a systematic dependence
relation between these two tasks, but nothing like the depen-
dence that would be expected if episodic recognition were a
necessary subprocess of recall. The recognition failure of recall-
able items is a consistent rather than a rare event that occurs
under a wide variety of experimental situations. As Tulving
(1983) has noted, - "'

We know that recognition failure occurs as readily in experiments
in which recognition is higher than recall as it does in experiments
in which recall is higher than recognition (e.g., Flexser and Tul-
ving, 1978; Wiseman and Tulving, 1976). It occurs in situations in
which no practice lists are given to subjects before they learn the
critical list (e.g., Begg, 1979; Bowyer and Humphreys, 1979). It
occurs as readily in an immediate test as in one given a week after
the learning (Tulving and O. C. Watkins, 1977). It occurs with
different kinds of to-be-remembered word pairs presented at
study: "weak" cues and targets, as in our original experiments,
"strong" cues and targets (e.g., Vining and Nelson, 1979), and
unrelated words (e.g., Begg, 1979; Rabinowitz et al., 1977). It does
not matter whether the recognition-test distractors are semanti-
cally related or unrelated to targets (e.g., Begg, 1979; Bowyer and
Humphreys, 1979; Postman, 1975; Rabinowitz et al., 1977). In-
deed, it is not necessary to have any distractor items at all in the
recognition test for recallable words to remain unrecognized (e.g..
Begg, 1979; Wallace, 1978). Low-frequency words with few seman-
tic senses (Reder et al., 1974) and words that have only a single
meaning in the dictionary (Tulving and O. C. Watkins, 1977) fail to
be recognized even though they can be recalled indistinguishably
from high-frequency words with many meanings. Whether sub-
jects come to the task without any preconceptions or fully aware of
what is happening, and whether they have had a great deal of
practice on the recognition-failure paradigm is immaterial
(e.g., Rabinowitz et al., 1977; Wiseman and Tulving, 1975).
(pp. 286-287)

The invariance can be described by the equation proposed by
Wiseman and Tulving (1975) to illustrate the relation between
recognition and the recognizability of recallable words:
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.5[p(Rn) - (1)

Although this equation provides the general form of the rela-
tion between recognition and recognition of recallable words,
the value of .5 may be a slight overestimation of the depen-
dence. Flexser (1981) noted that item and subject dependencies
need to be factored out of the data and devised a method of
homogenization that helps to do so. The difference between
raw and homogenized data is illustrated later. The basic point,
though, is that the model should produce a correlation on or
slightly below the Wiseman and Tulving (1975) function illus-
trated by Equation 1.

As is shown in Figure 1, which illustrates the probabilities of
recognition and recall from a variety of experiments, there ap-
pears to be no straightforward relation between recognition
and recall that allows one to predict the conditional relation
between recall and recognition failure that is given by the Tul-
ving-Wiseman function. The data from the experiments in Fig-
ure 1 may be reanalyzed according to the conditional probabil-
ity of recognition given recall, and this probability may be com-
pared with the simple recognition probability. The results of
such an analysis are shown in Figure 2.

The highly stable nature of this relation indicates that it is
telling us something important about the nature of human
memory. The fact that intuitive and plausible ideas about the
workings of memory, such as those of generate-and-edit theory
(Bahrick, 1979), are contradicted by it makes explanation of the
recognition-failure function an especially challenging problem.
It is also a problem of sufficient complexity that use of explicit
models may be illuminating. To discuss with confidence the
implications and predictions of various memory models, it is,
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Figure 1. The probability of recognition as compared with recall
found in the experimental data. (Each data point is based on a single
experiment or experimental condition. From Elements of episodic
memory (pp. 282-283) by E. Tulving, 1983, New York: Oxford Univer-
sity Press. Copyright 1983 by Oxford University Press. Adapted by
permission.)
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Figure 2. Proportion of recallable words recognized in the experi-
mental data shown in Figure 1, from human subjects. (Each data point
is based on a single experiment or experimental condition. From Ele-
ments of episodic memory (pp. 282-283) by E. Tulving, 1983, New
York: Oxford University Press. Copyright 1983 by Oxford University
Press. Adapted by permission.)

of course, necessary to look at implemented models. It would be
rash to claim that a model that has not yet been formulated for
this paradigm can or cannot, in principle, account for the re-
sults. In unimplemented models, the boundary conditions, an-
cillary assumptions that allow the model produce the data, and,
indeed, the basic conceptualization of the paradigm by the
author of that model, are not specified. So one simply cannot
know whether unformulated models will work or not, and spec-
ulation is not justified. Of the models that have been sketched
out, some can accommodate some recognition failure of recall-
able words but do not necessarily predict that the data fall on
the Tulving-Wiseman function—a much more exacting require-
ment than the mere prediction of any deviation from complete
dependence. Kintsch's (1978) and Gillund and Shiffrin's (1984)
models are probably in this class, though neither have been
applied to these data in detail. Some models, although they
offer accounts of the function itself, fail to offer any plausible
story for the exceptions (e.g, Begg, 1979; Flexser & Tulving,
1978; Jones, 1978). Some make predictions, such as that recogni-
tion failure should not occur with words that have only a single
meaning (Gillund & Shiffrin, 1984; Reder, Anderson, & Bjork,
1974), that are not borne out by the data (Tulving & Watkins,
1977). Some can produce the function but can equally easily
predict results that are widely discrepant from the function,
such as those that never occur in the data. For example, Hintz-
man (1987) has applied the multiple-trace model, MINERVA,
with results shown in Figure 3. Under some parameter combina-
tions, the model can produce results that resemble the Tulving-
Wiseman function (shown in Figure 3, Panel D). However, it
can also readily produce independence (shown in Figure 3,
Panels A and B), negative dependence (shown in Figure 3, Pan-
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Figure 3. Proportion of recallable events recognized as predicted
from several simulations of Hintzman's (1987) MINERVA 2 model.
(From "Recognition and recall in MINERVA 2: Analysis of the recog-
nition-failure paradigm'" by D. L. Hintzman, 1987, In P. Morris, Mod-
elling cognition. New York: John Wiley & Sons, Inc. Copyright 1987 by
John Wiley & Sons, Inc. Adapted by permission.)

els C and E), and vastly overdependent linear functions (shown
in Figure 4, Panel F)—patterns that are not produced by hu-
man subjects. Such liberty of prediction is inconsistent with the
highly constrained and lawful behavior of the human data and
suggests that the model is missing the core of the problem.
Because of its theoretical significance, I implemented a plain-
vanilla version of Murdock's (1982) TODAM model. It does not
produce the function. Because the TODAM model and the
composite holographic associative recall-recognition memory
(CHARM) model are closely related in a number of respects,
the reasons for the difference in predictions between the two in
this paradigm are of interest and are discussed later. The fact
that results other than the empirically observed recognition-
failure function and the exceptions to it are produced under
plausible assumptions about the nature of human memory indi-
cates that the relation is not artifactual in the sense that it is a
necessary outcome of any conceptualization of memory or that
it is a statistical quirk. If it were, then presumably all models
would produce it. However, as Tulving (1983) put it, "the search

for a theory that explains not only recognition failure but also
exceptions to it remains wide open" (p. 290).

There is a method of formalizing the recall and recognition
processes in a distributed model, CHARM, that produces re-
sults falling very close to the recognition-failure function. This
model may thus be used as a tool to better understand the
reasons for the empirical law and also to provide hypotheses
about the structure and operations used in human memory that
this relation between recognition and recall implies. By analyz-
ing the model, which is obviously simpler and more tractable
than human memory itself, I attempt to extract the critical
constructs that are responsible for the relation and to chart
some of the implications in terms of exceptions to the law. I also
examine which constructs are necessary for the phenomenon
by investigating other methods of instantiating recognition (as
in the TODAM model) or by varying storage assumptions in
the CHARM model, to see whether the effect still obtains. As is
later illustrated, the recognition-failure function depends on
two central assumptions in the model: (a) The information un-
derlying recall and recognition is stored in the same composite
trace and (b) the mechanisms underlying recall and recognition
are the same and involve representational retrieval. If either of
these assumptions in the model is violated, so long as the items
themselves are unrelated, or statistically independent, com-
plete independence between recognition and the recognizabil-
ity of recallable items results. With these assumptions in place,
however, the dependence relation, such as is found empirically,
is produced by the model.

Outline of the Model

The CHARM model incorporates as a central construct the
idea that the results of many associations or events are stored by
being superimposed in a composite memory trace. Because of
this superposition, the elements necessarily interact. Superpo-
sition is responsible for several of the most interesting predic-
tions of the model (see Metcalfe & Murdock, 1981; Metcalfe
Eich, 1982,1985; Metcalfe, 1990; and Metcalfe & Bjork, 1991,
for some examples that apply to the eyewitness testimony para-
digm). A number of other related parallel distributed process-
ing models also use the idea of superposition of events on a
single surface (e.g., Anderson, Silverstein, Ritz, & Jones, 1977;
Lewandowski & Murdock, 1989; McClelland & Rumelhart,
1986; Murdock, 1982,1989; Rumelhart & McClelland, 1986).
Distributed models are motivated by the idea that such super-
imposed or composite storage is necessary because of the
neural structure that underlies cognition (Anderson, 1970; Ko-
honen, Oja, & Lehtio, 1981). Only a few of the psychological
implications of such a concept of memory storage have been
charted, however. As is later shown, this composite method of
storage in which associations underlying both recall and recog-
nition necessarily interact is critical for the CHARM model's
ability to generate the recognition-failure function. Thus, the
recognition-failure predictions of this model stem directly from
the notion of composite storage in distributed neural memory
models.

The model is called holographic because it depends on an
associative encoding operation of convolution and a retrieval
operation of correlation. Gabor (who invented the hologram)
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analyzed a number of models and determined that these formal
operations define a model as being in the class of holographic
models. Certain aspects of the popular version of the holo-
graphic metaphor, such as the idea that a part of the film (trace)
is sufficient to reinstate a whole image or that multiple images
can be superimposed on the same film (trace), apply quite
nicely. Certain others (such as involvement with laser beams—
there are other kinds of holograms in any case) do not apply. Van
Gelder (1989) has pointed out that holographic associations
provide the most extreme and radical example of a truly inter-
active distributed encoding method. As with the idea of a com-
posite trace, the idea that items are interactively encoded when
they are associated and thus may alter one another is an impor-
tant notion about the nature of human memory.

The idea that both recall and recognition depend on associa-
tions formed by the operation of convolution and hence that
both processes involve explicit retrieval of events from memory
are investigated later in this article. Recall depends primarily
on interitem associations—the convolution of the cue with the
target. Recognition depends primarily on autoassociations—
the convolution of the cue with itself and the target with itself.
When a probe is presented for recognition, it is correlated with
the trace, just as in recall the cue is correlated with the trace. An
item that is interpretable as such is retrieved in both tasks. In
recognition the retrieved item provides the basis for an occur-
rence decision.

The idea that recognition, like recall, involves the retrieval of
an item rather than only the assessment of a strength or a famil-
iarity value has been proposed by Mandler (1980), Tulving and
Thomson (1973), Tulving (1983), and many others. Similarly, I
proposed that recognition was based on autoconvolutions (Met-
calfe Eich, 1985), which allow retrieval of an item from the
composite memory trace. I chose this kind of recognition pro-
cess because it permitted the holographic model to exhibit sensi-
tivity in recognition to the congruence or similarity between
the cue and the target, such as is shown in the empirical data. If
recognition is not formalized in this way, this particular kind of
similarity effect will not be produced. When it is formalized as
a retrieval process, however, factors important in recall, such as
similarity and organizational effects, will also impact on the
recognition-memory results. I did not initially propose the con-
volution-based recognition model to account for data within
the recognition-failure paradigm. Thus, this application pro-
vides a test case for that formulation.

There are other ways to think about the recognition process
that do not necessarily involve the explicit retrieval of an inter-
pretable item from memory. For example, one might enact a
global match to the trace or traces and assess only the strength
of that match, as is often assumed in signal-detection analyses
of recognition memory. Many researchers have suggested that
there is a familiarity or a fluency component in recognition that
does not involve specific retrieval. For example, Atkinson and
Juola (1973) have proposed that recognition may be based on
both a fast familiarity judgment and a slower retrieval process.
Similarly, Mandler (1980) has argued for both familiarity-based
and retrieval-based recognition. Although I certainly do not
wish to deny the possibility of some kind of familiarity-based
recognition, in this article I explore some implications of a
mechanism that retrieves an item, much like the retrieval mech-

anism in recall retrieves an item, which provides the basis for
recognition-memory judgments.

Representation

Items in the model are conveniently represented as vectors
with values randomly distributed around zero with some vari-
ance. They may vary in their similarity to one another, as pre-
scribed by the experimental situation. The model allows for
more specific delimitation of the exact makeup of particular
items if the experimental situation or the nature of the items
themselves warrants it. As is shown in some of the simulations
presented here, items may vary in the number of features they
contain, and also in their similarity, by feature overlap, to other
items. Hence, the random vector notion is a default assumption
for random stimuli but is made more specific according to the
experimental situation being modeled. The idea that memory
events may be represented as vectors has been a fruitful one in
the study of human memory, allowing researchers better under-
standing of similarity effects, interference effects, and a number
of other phenomena.

Association Formation

Two items,F=[/_fr,_1)/2,...,/_„/„,/! X»_iy2]andG=
fc - o. - D/2. • • • . S -i. So- 8\> • • - .*«.- iw 1. are associated in the
CHARM model by the operation of convolution, denoted with
an asterisk £»), and defined as

(F.G)m = Tm= 2 fej, (2)

where S(m) = [(;, 7)! - (n - l)/2 < (n - 1)/2, and i + j = m]. The
subscript m denotes the rath element in the vector formed by
convolution. Interitem convolution is said to underlie recall,
whereas autoconvolution primarily underlies recognition. Be-
cause both of these forms of processing are added into the same
trace, they will interact with one another. One may tease them
apart, however, and store interitem associations in one trace
and autoassociations in another. These separate trace models
will still be capable of recall and recognition, respectively. In
addition, the same items in this dual system version of the
model can be used. The results of doing so for the recognition-
failure function are investigated shortly and contrasted to re-
sults obtained with the single composite trace for both recall
and recognition.

Storage

The results of successive convolutions (be they autoassocia-
tions or interitem associations) are added into a single compos-
ite memory trace, which is one of the core ideas of the model.
The trace T is made up of associations as follows:

T = «A*A + 0A*B + «B*B + «C*C + 0C*D

+ uD*D + . . . . + preexisting noise. (3)

The weightings for the autoassociations (pi) and for the interitem
associations (/3) may vary The implications of this variation, for
recognition failure, are charted shortly The trace may also be
assumed to start out with some noise, perhaps from previous
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memories, rather than as a blank slate or a zero vector, though
in some applications of the model this does not change the basic
results. This addition of noise is investigated in simulations.

Retrieval

The retrieval operation is correlation. Retrieval generates a
new vector Rm from the elements of the cue and trace vectors by
cross-correlating them. Accordingly,

(4)

where Q is the cue vector with elements qt, T is the trace with
element tj, and S(ni) is the domain of paired elements over
which the correlation is attempted, that is, S(fn) = [(;', j)\ -(n-
l)/2 & /, j < (n — l)/2, and i — j= m\. The result of retrieval is a
new vector reflecting what the subject generates from episodic
memory. The nature of this retrieved item underlies all studies
in this model.

Relation Between Convolution and Correlation

Any given association A*B, consisting of unrelated items,
potentially contains the information from both of the asso-
ciated items. When B is used as the retrieval cue [B # (A*B)],
the result is A + error. When A is used as the cue, the result is
B + error. Under the autoassociation condition, that is where
A* A, when A is itself used as a cue, two signal terms (both of
which are A, in this case) are retrieved. So A # (A* A) = 2A +
error. The strength with which a particular item is retrieved as a
signal component under the operation of correlation depends
on the similarity between the retrieval cue, Q, and the item that
was associated with the item under consideration. In general,
one may say that:

Q # [(A*B) + (C*D) + (E»F) + ...]

= SQAB + SQBA + error^ + SqcD + SgDC

+ errorco + SQEF + SgFE + errorEF. (5)

Consider an example, to which I return later. Suppose that A is
associated with B, that A is also associated with itself, and that B
is associated with itself. This is the scheme that is proposed to
underlie both recall and recognition. The trace (ignoring
weightings of the interitem and autoassociations, for the mo-
ment) is

T = A*A + A*B + B*B.

If A is used as a retrieval cue, and hence is correlated with the
trace, the retrieved item is

R = A # (T) = A # [(A*A) + (A«B) + (B«B)]

= S^A + SMA + error^ + S^B + SABA

+ errorAB + SABB + SABB + errorBB.

Assuming that the similarity between an item and itself is 1 and
that A and B are unrelated (i.e, their similarity is zero), one gets:

R = A + A + B + errorAJI + error^ + errorBB. (6)

Thus, A retrieves itself, but it-also simultaneously retrieves the
item with which it was associated, namely, B. To compensate for
the fact that the autoassociation produces double the signal of
the interitem association, I will usually weight the autoassocia-
tions by .5 in the simulations that follow. In two of the simula-
tions that follow, however, the values of the weighting parame-
ters on the interitem associations and autoassociations are sys-
tematically varied.

Recall

Recall is based on retrieval, that is, on the vector resulting
from correlation of the cue with the trace. However, because the
output vector is typically noisy or distorted, and because in
simulations of the model it is necessary to say what is recalled
and how frequently it is recalled, a decision process is also neces-
sary. The decision process is formulated as follows: The re-
trieved vector is matched to every item in a lexicon of possible
outcomes (which excludes the cue—see Metcalfe Eich, 1982, for
a discussion and an experiment focused on this exclusion), and
in the simplest case, the item yielding the highest dot product
will be the item recalled. However, this dot product must ex-
ceed a lower threshold. If the retrieved signal is just too noisy to
be interpreted, recall will not occur. This threshold on recall
controls the intrusion rate. Nothing in the model prohibits sev-
eral items from being recalled from a single output vector, as for
example in the A-B/A-D paradigm. However, in the simulations
discussed later, only the best match is chosen as the recalled
item.

Recognition

Recognition is also based on retrieval. In this case, however,
the resulting vector is matched only against the probe itself. If
the item currently being used as the probe was autoassociated
and entered into the composite trace, then the vector retrieved
by the probe will show a positive dot product (or resonance
value) with the probe. If it was not encoded (and is unrelated to
everything that was encoded), then the match between the item
retrieved by the probe and the probe vector has an expected
value of zero. A yes decision is given if this match between the
retrieved item and the probe item exceeds a particular crite-
rion.

Having outlined the basics of the model, I now turn to several
applications of this scheme to experimental situations. Follow-
ing several such applications and discussions of the experimen-
tal findings, I return to a discussion of the reasons for the results
produced by the model. The overall strategy was to investigate
the relation between recognition and the recognition of recall-
able items under a wide variety of situations and levels of both
recall and recognition in an effort to see whether lawlike behav-
ior results with the model as it does with the human data.

Applications to Recognition Failure

Criterion for Recognition

Kintsch (1978) pointed out that the setting of the criterion for
recognition may be of theoretical importance in understanding
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the reasons for recognition failure. He noted that under a spe-
cial set of circumstances—namely, when the criterion in the
recognition task is very high and the criterion in the recall task
is low—generate-and-edit theory may be able to account for the
finding that subjects are sometimes unable to recognize items
that they can recall. It is not clear, however, that generate-and-
edit theory would produce the relation between recognition
and recognition failure over the entire range found in the data.
Because of the possible importance of the criterion in interpret-
ing the recognition-failure findings, it is important to review
the empirical results that have been presented on this issue and
also to investigate the predictions of the model under variations
in criterion.

Nilsson et al. (1988) conducted a cued-recall/recognition ex-
periment on unique names of people or on geographical names.
Examples were "He was the first of a long line but the only one
on horseback—GEORGE WASHINGTON" or "A well-known build-
ing for music in VIENNA." The to-be-recalled targets were the
words in capital letters. At the time of recall, 1 week later, sub-
jects were presented with the descriptive sentence and a blank
for the target; at the time of the recognition test, they were given
the target words themselves, embedded in a list of similar items.
Criterion shifts in recognition were investigated by using confi-
dence ratings given by subjects. Subjects rated their responses
on a scale from —3 to +3. On the basis of the confidence ratings
the data were divided into criterial categories that were lenient,
intermediate, or strict. In the lenient cases, items were treated
as being recognized if the rating was 1 or greater; in the interme-
diate category if the rating was 2 or greater; and in the strict
category, only if the rating was 3. These kinds of confidence
ratings have been analyzed by Murdock (1974) as mapping into
shifts in the subject's criterion, and the results of such an analy-
sis corresponded very nicely to what one would expect under a
signal-detection analysis of recognition in which the criterion
changes. Hence, this appears to be both a traditional and well-
accepted method of investigating criterion shifts.

The data were also segmented according to subjects' ratings
of the meaningfulness of the sentences. Meaningfulness was
assessed by subjective judgments of how well the descriptive
sentence fit with the target or of whether the sentence made
sense in terms of the target. Some notion of cue-target congru-
ity seems to apply, though perhaps the meaningfulness of the
items themselves was also being measured.

The probabilities of recognition and recall for the person
names are presented in Figure 4. The geographical names pre-
sent a similar picture. As can be seen from these data, the proba-
bilities of recognition varied considerably with recognition crite-
rion; as would be expected, fewer high criterion than low crite-
rion hits were found. The corresponding recall, of course, does
not vary as a function of recognition criterion. Both recognition
and recall were affected by the congruity (meaningfulness) be-
tween the cue and the target, but the levels of recall were af-
fected somewhat more. Highly meaningful events were remem-
bered better than were less meaningful events.

Figure 5 shows the proportion of recallable words recognized
as a function of recognition (left panel). The right panels shows
a reanalysis of these data, using a method of homogenization
devised by Flexser (1981) that factors out spurious correlations
resulting from item-selection effects and subject differences.
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Figure 4. The probabilities of recognition and recall as a function of
criterion changes in recognition. (Data are for the person names in
Nilsson, Law and Tulving, 1988. From "Recognition failure of recall-
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Despite a wide range in the level of recognition obtained by
differences in criterion, the data fell very close to the Tulving-
Wiseman function shown in Figure 2.

Additional data on recognition criterion differences were pre-
sented by Begg (1979), who varied the number of distractors in
the recognition test. He argued that with more distractor items
the criterion for recognition would be higher. Begg's data for
both conditions, measuring criterion in a manner different
from that of Nilsson et al. (1988), also fell very close to the
Tulving-Wiseman function.

Simulation Series 1
Method. To simulate the predictions of the model under conditions

of a criterion shift in recognition, a 2 x 5 x 2 x 3 design was set up with
the model, where the factors were (a) Type of Test, (b) Recognition
Criterion, (c) Number of Features in the Item Vectors, and (d) Convolu-
tions Within Each List. Each of these conditions was run through 1,000
replications (or 1,000 lists), so that the points (collapsed across pairs)
presented in Figures 6 and 7 are each based on 3,000 simulated obser-
vations.

Each run of each simulation was set up as follows: A lexicon of 70
items was constructed by randomly selecting a value for each of the 31
or 63 features (depending on the level of this factor) of each item from a
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Figure 5. Proportion of recallable words recognized as a function of recognition for the person and
geography names in Nilsson, Law and Tulving's (1988) experiments. (The left panel shows the raw data.
The right panel shows Nilsson et al.'s data after having been homogenized by means of the Flexser [198 1]
procedure, which controls for item and subject selection effects. From "Recognition failure of recallable
unique names: Evidence for an empirical law of memory and learning" by L. G. Nilsson, J. Law, and E.
Tulving, 1988, Journal of Experimental Psychology: Learning. Memory, and Cognition, 14, pp. 271, 273.
Copyright 1988 by the American Psychological Association, Inc. Adapted by permission.)

truncated unit normal distribution. Then each item was renormalized
so that the self dot products were 1. The composite trace was set up as
follows, where an asterisk denotes convolution as before and lexx refers
to lexical item x:

T = .5(kx l*lex 1) + .5(lex 2*lex 2)

+ (lex l*lex 2) + .5(lex 3*lex 3) + .5(lex 4*lex 4)

+ (lex 3*lex 4) + .5(lex 5*lex 5) + .5(lex 6*lex 6)

+ (lex 5* lex 6) + random noise.

To recall, each of Cue Items 1,3, and 5 were correlated with the trace,
and the vector that was retrieved was matched to every item in the
lexicon except the cue itself. The item that had the highest resonance
score, above a threshold of 0.0, was said to be the item that was re-
called. If that item was 2,4, and 6, forCues 1,3,and5, respectively, then
recall was said to have been correct.

To recognize, the Items 2,4, and 6 were correlated with the trace. The
vector resulting from the correlation process was then matched by
taking the dot product between the retrieved item and the probe itself.
The criterion for a match was varied to be 0,0,0.2,0.4,0.6,0.8, or 1.0. If
the degree of match exceeded the criterion, then the probe was said to
be recognized (i.e., a hit).

A 2 X 2 contingency table was tabulated that kept track of the num-
ber of times items were recalled and recognized, recalled but not recog-
nized, recognized but not recalled, and neither recognized nor re-
called. From this contingency table the overall probability of recogni-
tion, the probability of recall, and the probability that recallable items
were recognized was computed.

Results. Figure 6 shows the simple probabilities of recogni-
tion and recall as a function of criterion shifts in the recognition
process. It can be seen that the criterion affected, recognition in
the expected way. If the criterion was low, recognition was high,
whereas if the criterion was high, recognition was low. Also, as
expected, there was no difference in the level of recall as a

function of the recognition criterion. The small differences
shown in the simulation results are a result of the fact that dif-
ferent simulations were used for each criterion level, and hence
some random fluctuation occurs. Increasing the number of fea-
tures in the representations of the items had a beneficial effect
on recall. Number of features had less effect on recognition hit
rate.
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Figure 6. The probabilities of recall and recognition as a function of
recognition criterion changes and the number of features in the item
vectors. (From Simulation Series 1.)
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Figure 7. Proportion of recallable words recognized, as a function of
recognition. (Variations are attributable to shifts in recognition crite-
rion. From Simulation Series 1.)

Figure 7 shows the contingency relation between recognition
and the recognizability of recallable items. The results compare
favorably with those of Nilsson et al. (1988). Because there were
no systematic item- or subject-selection effects in the model
(each trial was independent, and there were no systematic dif-
ferences in runs, aside from the manipulated number-of-fea-
tures variable), the most appropriate comparison is with the
data presented in the right panel of Figure 4 in which such
factors have been removed from the data with human subjects.

Differences in the Recall Criterion
Although the CHARM model differs from classic generate-

and-edit models in several ways, it is similar insofar as in both
cases there is a criterion for the acceptable degree of match in
both recognition and recall. In generate-and-edit theories, a
number of response alternatives are generated as possibilities,
and then a recognition check is performed to see which one, if
any, was a member of the list under consideration. In the
CHARM model, only one item is retrieved by the recall cue,
but it may be noisy, systematically distorted, or a blend of sev-
eral items. Its identity needs to be ascertained, and so it is
matched against all of the response possibilities to see if any
provides a good enough match to be considered the recalled
item. Episodic recognition is not considered to be a substage of
recall; rather, both recognition and recall involve retrieval
(which is episodic), and then a (similar) decision process is en-
acted. In recognition, the match is only between the retrieved
item and the probe itself, whereas in recall all of the items in the
lexicon are response possibilities. In the simulations that follow
the criterion for the goodness of match in recall is varied.

Simulation Series 2
Method. Simulation Series 2 was like Simulation Series 1 except that

the recall criterion was also varied. This criterion gives the lower good-

ness of the match between the retrieved item and the best-matching
lexical item necessary for recall. In the first simulation, this value had
been set at zero. Here it was systematically varied from 0.2 to 1. The
data shown below factorially cross recognition criteria ranging from
0.2 to 0.8, in steps of 0.2, with recall criteria ranging from 0.2 to 1.0, in
steps of 0.2.

Results. Figure 8 shows the probabilities of recall with varia-
tions in the recall criterion. These summary data are collapsed
across recognition criterion, and so each datum is based on
12,000 simulated observations. The criterion for recall, of
course, does not affect recognition. The probabilities of recall
vary systematically, with a higher probability of recall (and of
intrusions, not shown) for low-criterion values anda lower prob-
ability of recall for higher criterion values. As before, recall is
better when 63 rather than 31 features are coded for each item
vector. The difference in recall as a function of criterion level is
particularly obvious in the simulations with 63 features in the
item vectors. The simulations with only 31 features are much
more variable, and so the target item is the best match (regard-
less of criterion) less frequently.

The contingency data for each of the treatment combinations
(now, not collapsed over recognition criteria) are presented in
Figure 9, with each panel in the figure providing the results
from separate variation in the recall criterion. The parameter
within each panel is the recognition criterion. As can be seen
from Figure 9, with few exceptions the simulated data fall on
the recognition-failure function established empirically.

One might be able to vary the recall criterion empirically by
giving guessing instructions or differential payoffs for correct
recalls or penalties for intrusions. The prediction of the model
is that this should alter the levels of recall but not the adherence
to the function. As previously noted, it is also possible to vary
the recognition criterion. Again the model predicts, and the
data show, that this should alter the hit rate in recognition but
not the adherence of the contingency data to the Tulving-Wise-
man function. Figure 10 provides a summary of the recogni-
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Number of features in Item vectors

Figure 8. The probability of recall as a function of changes in the
recall criterion and the number of features. (From Simulation Series 2.)
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Figurv 10. A summary of the proportion of recallable items recog-
nized as a function of recognition, when both the recall and the recogni-
tion criteria are varied. (From Simulation Series 1 and 2.)

tion-failure results simulated by changes in the recognition and
recall criteria from the first 2 simulation series.

Variations in the Weighting of the
Recognition Autoassociations

The level of recall may be higher than (e.g., Wiseman & Tul-
ving, 1976) or lower than (e.g, Postman, 1975) the level of recog-
nition, and still the relation between recognition and the recog-
nizability of recallable words obtains. Rabinowitz, Mandler,
and Barselou (1977), too, have provided experimental condi-
tions in which recall exceeds the recognition hit rate, with con-
tingency results close to the Tulving-Wiseman function. Al-
though there are other ways to vary the levels of recognition and
recall in the model, changing the weighting of the interitem
associations as compared to the autoassociations is perhaps the
most straightforward. Before simply allowing these weightings
on the interitem associations and on the autoassociations to be
free to vary, however, one would like some experimental evi-
dence indicating that the coding on the information responsi-
ble for recognition and on that underlying recall may be separa-
ble and may be under subject control, as these weighting param-
eters imply. It could be that anything that affects recall
necessarily affects recognition in the same way. If such a result
were consistent, it would suggest that an undecomposable sin-
gle mnemonic representation underlay both processes. Such an
undifferentiated view of the mnemonic information underlying
recall and recognition contrasts with the view proposed here. In
the formulation of the model under investigation, different
kinds of associations—interitem associations and autoassocia-
tions—are primarily responsible for recall and recognition, re-
spectively. Focused attention on the characteristics of the indi-
vidual items should increase the weightings on the autoassocia-
tions. Integrative processing, or especially attention to the

relations between the items, should increase the weightings on
the interitem associations. In short, the two tasks should be
dissociable, at least insofar as improvements in one task should
not necessarily also result in improvements in the other.

A study by Carey and Lockhart (1973) is important for the
dissociation between the overall levels of recognition and re-
call. In Carey and Lockhart's experiment, subjects were given a
number of lists in which recall was required, as compared with
lists in which recognition was required. On the critical list,
subjects were either shifted to the alternate test or not shifted.
Carey and Lockhart found that the expectation of a recall task
hurt recognition performance, although there was no main ef-
fect of the expectation on the recall performance. There was a
difference as a function of task expectation on which parts (cate-
gories) of the list were recalled. These results suggest that there
is some subject control of encoding that is task specific and that
the recall and recognition tasks have different requirements.
The results are not perfectly straightforward for the present pur-
poses, however, because free recall rather than cued recall was
used. Wicker (1970) showed differences in recall as a function
of the materials used, specifically that picture-word differences
were attributable to stimulus recognition rather than to the as-
sociative component of paired-associate recall. Although a dif-
ference in level of recall for word and picture stimuli showed up
in the simple recall data, when these data were conditionalized
on stimulus recognition, the materials manipulation showed no
effect. Bower (1970) showed a difference between recognition
and paired-associate recall of a related nature. He found that
the use of interactive imagery had no impact on stimulus recog-
nition although it had a large effect on associative recall. These
findings are generally consistent with the idea that the inter-
item associations and the autoassociations may be treated dif-
ferently.

In the model, although the autoassociations and the inter-
item associations interact (a property that is discussed in more
detail shortly), the former primarily underlie recognition perfor-
mance, whereas the latter underlie recall. Thus, one may affect
recognition by altering the weightings on the autoassociations.
In Simulation Series 3, the weightings on the autoassociations
were systematically varied. In Simulation Series 4, the weight-
ings on the interitem associations were varied.

Simulation Series 3

Method. A lexicon of 50 unrelated items, each consisting of 63 fea-
tures, as in the previous simulations, was set up. The items were con-
volved and entered into the composite memory trace according to the
scheme given in the previous simulations, except that the weighting on
the autoassociations was systematically varied rather than being fixed
at 0.5, as had been the case previously. These weightings varied from
0.0 to 1.0, in steps of 0.1. For each of these simulations, the weighting
on the interitem associations, on which recall depends, was held con-
stant at 1. The criterion for recall was held constant at 0.0 (and hence
recall depended only on the item being the best match). The criterion
for recognition was also held constant for these simulations, at 0.8. The
simulations were run through 200 replications, and there were three
pairs in each list. Hence, each data point shown in Figures 11 and 12 is
based on 600 observations.

Results. Figure 11 shows the simple probabilities of recall
and recognition as a function of weighting changes on the au-
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Figurel 1. The probabilities of recall and recognition as a function of
changes in the weighting of the autoassociations primarily underlying
recognition in the model. (From Simulation Series 3.)

toassociation. One might, at first, expect that weighting
changes on the autoassociations would only affect recognition
—with a higher weighting giving rise to a higher level of recogni-
tion. In fact, a higher weighting does result in a higher level of
recognition, but it also results in a lower level of recall. This
trade-off occurs because the information for recognition and
recall is stored in the same trace, and thus increasing the
strength of one type of information, provided it is unrelated to

the other type, as it is in this simulation, increases the interfer-
ence on the other. This interference effect is particularly pro-
nounced in recall because it may cause the wrong lexical item
to be selected.

Figure 12 shows the recognition-failure functions that re-
sulted from this series of simulations. The contingency data
adhere quite nicely to the function, despite large differences in
the level of recognition. Whether recognition is better than re-
call or vice versa in the model does not affect the relation be-
tween recognition and the recognition of recallable items.

Variation in the Weighting of the
Recall Interitem Associations

Simulation Series 4
For the sake of completeness, I ran the analogous simulations

to the preceding series with the weightings on the interitem
associations responsible for recall varying (and the recognition
autoassociative weightings being held constant atO.5). This sim-
ulation series was set up exactly like the preceding one, except
that the weightings on the interitem associations were varied
from 0 to 1 in steps of 0.1. The recognition criterion was fixed at
0.8, as before. The recall criterion was fixed at 0.0 so that the
best-matching item above that criterion was taken to be what
was recalled. I ran this first through 200 replications and then
through 2,000 replications.

The probabilities of recall and recognition are presented in
Figure 13. The level of recall varied with weighting, as expected:
The higher the weighting on the interitem association, the
higher the level of recall. One might have expected, given the
preceding series, that the increase in recall would result in a
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recognition, when the weightings on the autoassociations vary. (From changes in the weightings of the interitem associations primarily un-
Simulation Series 3.) deriving recall performance. (From Simulation Series 4.)
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decrease in recognition. Figure 13 shows that the weighting of
the interitem associations had little effect on the recognition hit
rate, however. The increased weighting of the interitem associa-
tions causes a small increase in the variance of the entire trace,
but it has no effect on the mean resonance between the re-
trieved item and the probe. The mean value of the resonance of
the item retrieved to the probe was 0.76 in the case of a 0.0
weighting on the interitem associations and 0.76 in the case of a
weighting of 1.0, but the standarddeviationsoftiiese resonances
were 0.42 and 0.60, respectively. The increase in variance has a
much greater effect on recall than on recognition. In recall, all
of the alternatives in the lexicon are available as responses.
Given an increase in variance, the chance that a wrong lexical
item will be selected increases considerably. In recognition,
though, only the probe is considered, and thus increases in
variance have fewer opportunities to exert themselves.

I included some lures in this simulation because I expected to
show a small increase in the false-alarm rate given the increase
in weighting of the interitem associations. In the entire first
simulation series there were 1,100 lures presented for recogni-
tion. However, given the same criterion of 0.8 that was used for
recognition hits, the false-alarm rate was zero. With the second
simulation, replicating 2,000 times, similar results (slightly
more reliable) obtained. The false-alarm rate was still zero
though this time there were 11,000 opportunities. This and a
variety of other simulations I have conducted on related issues
indicate that recognition is less sensitive than recall to alteration
in the weightings of other associations in the trace.

The contingency relation between recognition and the recog-
nition of recallable items produced by this simulation is shown
in Figure 14. Because there was little variability in the level of
recognition, the scores are not spread over the entire range.
Nevertheless, these contingency data cluster where one would
expect given the empirical recognition-failure function.

5
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Proportion Racognlzod

Figure 14. Proportion of recallable items recognized as a function of
recognition, when the weighting on the interitem associations varies.
(From Simulation Series 4)

The Effect of Noise

A number of psychological phenomena are reasonable can-
didates for modeling with the addition of noise. For example,
the passage of time might be represented as the addition of
noise into the composite trace. Tulving and Watkins (1977), in a
recognition failure experiment with unique targets (following
Reder et al, 1974) such as "you can sometimes eat it but never
sit on it—CACTUS, hairy on the outside but delicious on the
inside—COCONUT, a very busy biological matchmaker—EN-
ZYME," tested half of such a list immediately and the other half
at a delay of 1 week. The immediate levels of recall and recogni-
tion were very high, and both of these levels dropped consider-
ably at a delay. Both sets of data were consistent with the Tul-
ving-Wiseman function, though the immediate test data were
near ceiling and so are difficult to interpret. Many other experi-
ments have used an immediate test and have shown data falling
on the function, so the question is really whether the interfer-
ence that accrues over time produces deviations from the func-
tion. The data indicate that it does not. Donnelly (1988) tested 4
weeks after study These results, too, conformed to the recogni-
tion-failure function. Nilsson et al. (1988; shown in Figure 5)
tested 1 week after study with results on the function. Finally,
Muter (1978) used cue-target pairs that were learned preexperi-
mentally. He also found data that fell on the function. It appears
that delay in testing does not alter the adherence of the data to
the Tulving-Wiseman function.

A second situation that might be modeled by the addition of
noise in the composite memory trace is the effect of aging on
memory performance. There are, of course, other hypotheses
about the nature of the impairment in memory that are often
found with aging, so I wish to make no strong claim that the
addition of noise is the only way in which one might model this
factor. It does, however, seem like a plausible default candidate
for modeling how memory may be impaired. Rabinowitz
(1984) tested aging patients as compared with normal adults in
the recognition-failure paradigm. There were differences in rec-
ognition and especially recall performance. Nevertheless, the
contingency data showing the relation between recognition and
the recognizability of recallable items fell on the function for
both subject populations. These experimental results converge
on the conclusion that although the addition of noise should
affect performance, and particularly recall performance, it
should not result in marked deviations from the recognition-
failure function.

Simulation Series 5

Method. This simulation was set up in a manner similar to the
previous simulations except that, in addition to the three interitem
convolutions underlying recall and the six autoconvolutions underly-
ing recognition, an additional irrelevant pair was convolved as a noise
item and added into the composite trace. The weighting on this noise
term was varied to be 0,1,2, or 3. The design of the simulation was a
2 x 2 X 2 x 4 x 3 factorial design in which the factors were Task (recall
or recognition), Recognition Criterion (0. or 1), Number of Features in
the Item Vectors (31 or 63), Noise Level (0,1,2, or 3), and Pairs (3). With
1,000 replications of each list, collapsed over pairs, each datum is
based on 3,000 observations.

Results. The probabilities of recall and recognition are pre-
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Figure 15. The effect of noise on the probabilities of recognition and recall. (From Simulation Series 5.)

sented in Figure 15. As can be seen from this figure, the proba-
bilities of recall decreased with an increasing amount of noise.
The effects of noise on recognition were not as simple as were
the effects on recall. With a low recognition criterion there was
a lower recognition hit rate with high noise than with low noise.
With a high criterion, however, the recognition hit rate in-
creased with increasing noise. The reason for both of these ef-
fects is that although the mean resonance score of the retrieved
item to the probe was the same in all of the noise conditions, the
variance of the resonance scores increased with increasing
noise. Thus, there were more observations at a high noise level
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Figure 16. Proportion of recallable words recognized as a function of
recognition, when the amount of extraneous noise varies. (From Simu-
lation Series 5 J

than at a low one that were below the low criterion: An increase
in noise resulted in a decrease in hit rate with the low criterion.
There were also more observations with a value exceeding the
high criterion at a high rather than a low noise level: An in-
crease in noise resulted in an increase in hit rate. In an addi-
tional simulation, I chose a single recognition criterion near the
mean of the resonance scores. The recognition hit rate in this
case was fairly stable, despite differences in the amount of
noise.

The recognition failure results from the simulations with
high, medium, and low criteria and varying levels of noise are
shown in Figure 16. As might be expected with such low proba-
bilities of recall on which the conditional data are based, the
results are noisier than in the previous simulations. Neverthe-
less, they conform reasonably well to the empirical function. As
seems to be true in the data, the amount of extraneous noise in
the model does not substantivety alter the relation between rec-
ognition and the recognizability of recallable items.

List Length
List length is a standard memory variable that can be mod-

eled easily by varying the number of pairs in the model. The
effect of list length in recognition and recall has been investi-
gated in a study reported by Morton, Pavlick, and Julian (1989a,
1989b). Their finding is straightforward with respect to the rec-
ognition-feilure function: The data were on it.

Simulation Series 6
In this series the number pairs in the trace were varied from 2

to 6, along with the recognition criterion, which ranged from .2
to .8. The number of features in the vectors was 15 or 63; and the
simulation was replicated 500 times. As can be seen from the
probabilities for the 63 feature vectors (shown in Figure 17),
increasing the number of pairs decreased the recall levels but
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Figure 1 7. The effect of list length and recognition criterion on the
probabilities of recognition and recall. Item vectors consisted of 63
features. (From Simulation Series 6.)

did little, overall, to the recognition hit rate. As was the case
with the previous two simulations, increasing the number of
pairs increased the variance of the resonance between the re-
trieved item and the probe but had no effect on the mean reso-
nance. The contingency data (shown in Figure 18) are close to
the empirical function.

Probabilistic Encoding of Features

The idea that people may not encode all possible features but
will over time, sample features of the item is a very powerful
construct that has enjoyed considerable success in explaining
much data about human memory. The idea goes back to Estes's
(1955) stimulus sampling theory. It was modified and elabo-
rated by Bower (1972) and by Martin (1968) as encoding vari-
ability theory and had considerable explanatory power in that
context. More recently, Murdock (1989) has used another vari-
ant of this probabilistic encoding idea to explain some of the
effects of different presentation rates, and Bjork and Bjork (in
press) have used it to help explain the effects of retrieval on later
performance. The core idea is a highly plausible one. Although
there may exist for items like words or sentence fragments an
idealized replete potential mental representation, under most
normal circumstances the events of memory will not be fully
encoded. Rather, only some subset of the features that could be
encoded for a given Hem will actually be sampled. If this charac-
terization of the encoding process is correct, then it is impor-
tant to see whether the recognition-failure function, as gener-
ated by the model, is robust with feature sampling. In all of the
previous simulations, all of the features that were assumed to
represent particular items were convolved and entered into the
composite trace. In these simulations, the proportions of fea-

tures that were encoded for particular items were systematically
varied.

This manipulation in the model is akin, perhaps, to encoding
time manipulations in experiments (see Murdock, 1989). It
could also relate to an age variable where older subjects might
not be capable of encoding as many features of the Hems in a
given amount of time as younger subjects. As mentioned earlier,
Rabinowitz (1984) showed that both young and old age groups
produced results that conformed to the function.

Simulation Series 7
Method. A lexicon of 70 items was constructed by randomly assign-

ing feature values to each item, as in the previous simulations. In the
four major conditions of the simulations, these vectors started out with
15,31,63, or 95 features. Before the items were convolved and stored in
the composite trace, however, random subsets of the features for each
item were selected to be the sampled features. The proportion of fea-
tures sampled at encoding ranged from 0 to 1 in steps of 0.2. The actual
features that were sampled were randomly selected, and a different
random selection was taken each time an item was coded. So if Lexical
Item 1 was associated with Lexical Item 2 and also with itself, there
were three tokens of Item 1 (all based on the Canonical Item 1) pro-
cessed and entered into the trace. The sample of features for Item 1 was
randomly different for each of these three tokens. At the time of re-
trieval, the canonical item vector was used as the retrieval cue, on the
assumption that subjects had unlimited time to encode the cue. This
cue was then correlated with the trace to produce a retrieved item that
went through the usual decision process for recognition or recall. The
recognition criterion was varied to be 0.2, 0.4, 0.6, or 0.8. Each list
contained six pairs and was replicated 100 times, giving data based on
600 observations per point.

Results. The results showed wide variations in the simple
probabilities. Performance increased with both the number of
features in the canonical vectors and the proportion of features
sampled. These results are shown in Panels A-D in Figure 19.
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Figure 18. Proportion of recallable words recognized as a function of
recognition, when the list length varied. {From Simulation Series 6)
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Figure 19. The probabilities of recall and recognition as a function of the number of features in the hem
vectors and the proportion of those features that are sampled. (From Simulation Series 7.)

The contingency data, showing a dependency relation be-
tween recognition and the recognizability of recallable items,
are presented in Figure 20. There was also one point, within the
15-feature set of simulations, that fell slightly below the line of
dependence. I have no explanation for it except that the model
depends on random assignment of features, and occasionally
the randomization can produce an aberrant result. The probabi-
listic encoding manipulation itself had no effect on the contin-
gency relation. Regardless of what proportion of features was
selected to be the sample encoded, the relation between recogni-
tion and the recognition of recallable items showed a small
amount of dependency, approximating the Tulving-Wiseman
function.

Interestingly, the number of features in the canonical vectors
did have an effect on the dependency relation. Fewer features

resulted in more dependence between recognition and the rec-
ognizability of recallable items than did more features. This
observation is taken up in the next section of the article.

Exception to the Function:
Impoverished Stimuli Rotefy Encoded

Simulation Series 8

As was suggested in the previous simulations, the model in its
intact form reveals a condition that produces an exception to
the function in the direction of too much dependence. Depen-
dency increases as the number of features in the item vectors
decreases. This trend can be seen by examining the overall
effect of the number of features from Simulation Series 8
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Figure 20. The proportion of recallable items that were recognized as a function of recognition when the
number of features in the canonical representation varied (shown in separate panels) and the proportion of
features sampled varied. (From Simulation Series 7.)

(shown in the right panel of Figure 21). When the items were
constructed of very few features—seven features total—the con-
tingency data showed considerably more dependence than is
predicted by the Tulving-Wiseman function. This result is
shown in the left panel of Figure 21.

Experimental Data

Four experiments show dependence of this sort. Begg (1979)
showed that rote as compared with meaningful encoding af-
fected the degree of dependence—meaningful encoding pro-
duced data on the function; rote encoding produced overde-
pendence. Very recently, Bryant (in press) has provided similar
results. When subjects encoded shallowly, more overdepen-

dence was shown than when they encoded deeply. They inter-
preted these results as indicating that differences in the integra-
tion between the cue and target were critical, but one might also
interpret these findings in terms of the number of features en-
coded in the various conditions. Neely and Payne (1983) found
results within a few percentage points of the function for related
pairs, for unrelated pairs, and for famous names, but they found
overdependence for unknown names. It would seem that un-
known names may be meaningless in the sense of having very
few features, whereas known names may be encoded by more
features. Most compelling, though, is the work of Gardiner and
Tulving (1980), which showed that impoverished stimuli, such
as digits, paired with words (e.g, "27-BHNG; 74-OPEN") pro-
duced overdependence. When subjects were given detailed in-
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Figure 21. The left-hand panel shows the proportion of recallable items that were recognized as a func-
tion of recognition when the vectors consist of only 7 features. (The right-hand panel shows the systematic
increase in dependency with a decrease in the number of features. Triangles show the results for 95
features, squares for IS features. Summarized from Simulation Series 8.)

structions about how to convert these stimuli to meaningful
events—by. for instance, thinking about them as dates for im-
portant life events—then (but not with rote encoding) data re-
verting to the function were produced. The example they gave
of elaborative encoding was for the pair "63-now" Along with
other mnemonic suggestions, they told subjects that

on encountering such a pair in the study list, they might think of
63 as the year 1963. They might then remember that 1963 was the
year in which John F. Kennedy was assassinated, and if they did
so, they would then undoubtedly remember how he was assassi-
nated (Gardjaerfrrulving, 1980, p. 199)

A similar, "BufTesTextfefne result—overdependence with rote
encoding but data on the Tulving and Wiseman function with
elaborative encoding—was found with abstract word pairs such
as "Honor-ANXiETK" Gardiner and Tulving's and Begg's data
showing overdependence with these impoverished stimuli are
shown in Figure 22.

There is converging evidence that impoverished items like
digits (when not given special elaboration) may differ from other
stimuli in the number of features encoded. This evidence comes
from a review of the experimental literature on the Rock re-
placement paradigm by Restle (1965). In that paradigm, data
indicating all-or-none learning are consistently observed in
paired-associate learning for impoverished stimuli like digit-
letter pairs. Presumably, if there are very few features, the stim-
uli do not support partial learning. With more complex mate-
rials, including both nonsense syllables and word pairs, the data
in the Rock paradigm indicate incremental learning (as would
be possible if there were many features in the representations of
the more meaningful materials). It appears that the complexity
of the materials may map in a natural way into a theoretical

construct like number of features. I postpone the question of
why the model predicts more dependence when the items have
fewer features until I have discussed why the model produces
dependence between recognition and the recognizability of re-
callable items at all.

Exception to the Function: Similarity

The nature of the materials in the recognition-failure para-
digm has caused considerable controversy. In many experi-
ments, the weakly related pairs originally used by Tulving and
Thomson (1973, e.&, "whiskey-WATER, glass-HARD, bath-
NEED") have been used as the to-be-remembered cue-target
pairs. However, in some cases the items have been highly re-
lated to one another and in other cases they have been unrelated
word pairs. In a sequence of experiments, Rabinowitz et aL,
(1977) varied the similarity of the cue-target pairs from unre-
lated (Experiment 6) to low relatedness (in the remainder of
their experiments). In all cases, however, the data were close to
the function.

Neely and Payne (1983) also varied the relatedness of word
pairs. Percentage correct was enhanced by relatedness in both
recognition and recall—a near ubiquitous finding in the litera-
ture. The effect of relatedness was larger on recall (20.6%) than
on recognition hit rate (1.8%). Neely and Payne reported overde-
pendence with the related pairs and conformity to the recogni-
tion-failure function with the unrelated pairs. Although signifi-
cantly different from the function, their results with the related
pairs were off by only about 1 % So it would seem that if there is
some overdependence due to the relatedness of the cue and
target, it might be hard to detect.

Muter (1978), in an experiment that relied on subjects' preex-
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Figure 22. Data from Gardiner and Tulving (1980) and Begg (1979)
showing overdependence with impoverished stimuli rotely encoded.

perimental knowledge, used cue-target pairs, such as "Maker
of the US. flag: Betsy ROSS," or "Author of the Last of the Mohi-
cans: James Fenimore COOPER." Presumably, as long as people
knew who the famous person was, the cue and target were fairly
redundant or similar, though because there could be other de-
scriptions of, say, COOPER (such as "Cognitive psychologist work-
ing on the issue of visual mental representations: Lynn") that
would also be appropriate, the cue and target cannot be said to
be totally redundant in Muter's experiment. Subjects were
asked to recognize from a list of common last names those of
people who were famous or to recall the name given the uncapi-
talized part of the sentences as a cue. Muter found data close to
the function.

Muter (1984) replicated this result with common names, but
when the materials were rare names with their associated cues,
such as "Siberian peasant and mystic who exerted great influ-
ence on Empress Alexandra of Russia: Grigory RASPUTIN;
Danish philosopher, founder of existentialism: Saren KIERKE-
GAARD; (1854-1891), French novelist (Madame Bovar^): Gus-
tave FLAUBERT," a high degree of dependence (i.e., almost no
recognition failure) was found. It seems that the uniqueness of
the names may not be the critical factor, especially because
Tulving and Watkins (1977) also used unique (but rather famil-
iar and meaningful) words such as HANDSHAKE) and Nilsson et
al. (1988) used unique proper names, and both groups found
data on the function. There are two factors other than unique-
ness per se that may be important in producing the overdepen-
dence. First, the rare names may have been unknown to many
of the students participating in the experiment and hence were

rather meaningless. If they did know the people, the informa-
tion in the cue may have exhausted that knowledge for many of
the students on many of the names. One may speculate that
these items might have relatively few features. The common
names may have had more semantic features and thus have
been more meaningful. Second, the cue and the target were
highly redundant. The cue "English economist best known for
the theory that population tends to outrun food supply:
Thomas" seems to be coextensive with the target MALTHUS.
This experiment may thus provide an instance of very high
similarity between the cue and target coupled, perhaps, with
few features in the representations. It appears from these data
that very high cue-target similarity produced considerable
overdependence—a clear exception to the function.

Some other exceptions to the function in the direction of
overdependence have been found with extremely high cue-tar-
get similarity. Nilsson and Shaps (1980, 1981) used homoge-
neous lists in which all of the pairs of words were highly similar
to one another—category name-category exemplar pairs, such
as "flower-ROSE, four-legged animal-HORSE." Nilsson and
Shaps also found much more dependence between recognition
and the recognizability of recallable items than would be ex-
pected on the basis of the Tulving-Wiseman function. Nilsson
et al. (1987) conducted follow-up work on this overdependence
result. Their experiment differed from the earlier one insofar as
only some of the pairs in the list bore the relation category
name-category exemplar. Hence, subjects could not engage in a
recall strategy of generating the first category exemplar that
came to mind. Although such a strategy would have been feasi-
ble in Nilsson and Shaps' (1980,1981) earlier experiments, it
would not consistently work in the later Nilsson et al. (1987)
study. In this nonhomogeneous-list experiment, designed to
eliminate such a guessing strategy, the highly similar pairs pro-
duced data that reverted to the Tulving-Wiseman function.

Finally, the most recent and straightforward exploration of
the effects of similarity on adherence to recognition failure was
made by Jones and Gardiner (1990). They asked subjects to
study word pairs that were either semantically related, asso-
ciated with a normative probability of 1%, or identical. They
varied whether subjects were or were not encouraged to guess. It
is not clear, from the point of view of this model, what should
happen in the guessing-encouraged condition, so it will not be
considered further. In the guessing-discouraged condition, how-
ever, only the identical (or maximum-similarity) condition
showed a marked deviation from the Tulving-Wiseman func-
tion. As with the previously cited studies, the direction of this
deviation was toward overdependence.

The effects of similarity are complex. Some studies in which
similarity has been varied produce data that conform fairly
closely to the function. There are indications, however, that
very high cue-target similarity, especially with otherwise rela-
tively meaningless materials, may result in more dependence
than is usually found between recognition and the recogniz-
ability of recallable items.

Simulation Series 9

Method. To investigate the effect of similarity on the recognition-
failure function in the model, three simulations varying the similarity
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Figure 23. The probabilities of recall and recognition as a function of
increasing cue-target similarity. (The recognition criterion is varied.
From Simulation Series 9.)

the identical-pairs simulations, all of the features were identical in the
cue and target but unrelated between pairs. For each simulation run,
three pairs of items and their corresponding autoconvolutions were
added into the composite trace, with a weighting of 0.5 on the autoasso-
ciations and 1.0 on the interitem associations. The criterion for recogni-
tion was varied from 0.2 to 0.8 in the unrelated case and 0.6 to 3.0 in
the similar and identical cases.

Here, as in most other work on the model, the cue itself was elimi-
nated from consideration as a response possibility in recall. If it were
not eliminated, then the effects of similarity are not straightforward.
Cue intrusions result and the simple probabilities are nonmonotonic
with an increase in similarity. Some of these effects are discussed in
Metcalfe Eich (1982,1985). However, allowing that the cue itself can be
eliminated, as it can be in most experiments, the effects are straightfor-
ward.

Results. The results of within-pair similarity on the probabil-
ities of recall and recognition are shown in Figure 23. Both
recall and recognition were improved by the increase in the
within-pair similarity. As can be seen from the left panel of
Figure 24, all three levels of cue-target similarity produced a
slight dependence between recognition and the recognizability
of recallable items. From these initial results I thought that
similarity did not matter for the recognition-failure function, as
seems to be the case from several of the experiments reported
earlier. However, this conclusion was premature. In fact, cue-
target similarity did have an effect on the recognition-failure
predictions of the model.

of the cue-target pairs were conducted. The items in the lexicon were
initially constructed as random vectors consistingof 63 features. In the
unrelated-pairs simulations they were left unchanged. In the similar-
pairs simulations, there was a 0.6 chance that any given feature value in
the first hem in each pair would be replaced by the value of that feature
in the second item. Items were unrelated between pairs, however. In

High Similarity With Few Features
Having found that when the items have few features the ex-

tent of dependence increases, I decided to redo the simulations
on similarity, using few features. This increased the chances of
being able to detect a difference. The right panel of Figure 24
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Figure 24. The effects of similarity on the proportion of recallable items recognized as a function of
recognition. (The left panel shows the results of similarity with 63-element vectors. The right panel shows
the effects with 15-feature vectors. From Simulation Series 9^
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gives the relation between recognition and the recognizability
of recallable items as a function of similarity when the item
vectors consisted of only 15 features. There was an effect of
similarity in the model, though when many features are coded
h is difficult to detect it.

Similarity between the cue and target produced a straightfor-
ward correlation between the cue in recall and the probe in
recognition. As such, the resulting correlation between the two
tests is unsurprising (and is, in fact, predicted by a number of
other models, such as that of Flexser & Tulving, 1978). What is
more surprising is the finding that there is a dependency rela-
tion in both the model and the data even when the cue and
target are unrelated. The reason for this relation is discussed
shortly.

What Causes the Recognition-Failure Function?

One strategy that may be used in understanding why the
model produces the dependency function (and by inference,
why people produce these results) is to violate central assump-
tions and see whether the result still holds. If it does, then that
assumption was not critical; if not, then there is something
interesting to be learned. Two critical assumptions are investi-
gated here: (a) that recognition and recall both involve retrieval
of, qualitatively, the same sort of representations from memory
and (b) that the information underlying both recall and recogni-
tion be stored in the same composite memory trace.

Representational Retrieval in Both Recognition
and Recall

In CHARM, recognition is formulated as a true retrieval pro-
cess of the sort used in recall. An item, which is in the form of
the initially encoded event—that is, represented as a vector, is
retrieved in recognition as in recall. The fact that such a vector
is generated as the basis on which a decision about previous
experience is made is what I mean by retrieval of a representa-
tion. This is not the only way, nor, indeed, the most common
way, to think about recognition memory. It is possible to make a
recognition decision without retrieving representational infor-
mation. Indeed, most models of recognition memory rely on
mere strength decisions rather than on the reinstatement of
representations. Mathematically, one can distinguish whether a
representation is retrieved or a strength value is assessed be-
cause the former involves the reinstatement of a vector, whereas
the latter entails only the production of a scalar. Here I look at
whether representational retrieval in recognition as well as in
recall is critical for CHARM'S prediction of the TulvingWise-
man recognition-failure function. In all previous simulations
reported here, recognition was formulated as representational
retrieval. In the simulations that follow, which are, in fact simula-
tions of the TODAM model rather than the CHARM model,
recognition is formalized instead as a global match process in-
volving only the assessment of a scalar strength value.

In TODAM, as in CHARM, items are represented as vectors,
and for recall, pairs of items are convolved with one another. For
recognition, simple vectors (untransformed) are added into the
composite memory trace. Instead of retrieving an item at time
of recognition and then deciding whether that item matches

the probe (as in CHARM), the recognition-decision process in
TODAM consists of taking the dot product between the probe
and the composite memory trace. A scalar is returned and no
retrieval (in the sense that a memorial event is reinstated) takes
place. As Murdock (1982, 1985, 1989), has documented in a
variety of articles, this model does a rather nice job of account-
ing for much of the data within human recognition memory.
The question is not whether this is a successful model (it is) but
rather whether this tbrmalization of the recognition process, in
combination with the convolution-correlation recall process,
will automatically give rise to the recognition-failure function
of Tulving and Wiseman (1975). The equation for TODAM that
is comparable to Equation 3 for CHARM is

M = A*B + A + B.

Retrieval for recall is

A#M.

Retrieval for recognition is

B-M.

Although much work has been done on TODAM investigat-
ing weighting parameters—adding noise externally and study-
ing decision processes, in the simulations that follow I investi-
gated only this simple version of the model, which provides the
most straightforward comparison to the basic schema used for
recognition and recall in CHARM. Hence, this exercise should
not be taken to be an exhaustive exploration of TODAM.

TODAM Simulations

The first simulation series was conducted by constructing a
lexicon of 70 item vectors in a manner like that used in the
previous simulations. The vectors in this initial series each had
63 features, like those in most of the aforementioned simula-
tions of CHARM. Interitem associations were formed by con-
volving the first lexical item with the second, the third with the
fourth, and so on. Instead of autoconvolving the item vectors for
recognition (as was done in CHARM), the simple lexical vec-
tors were added into the trace. The simulations were conducted
as a factorial design, where the factors were Number of Pairs (5,
ranging from 1 to 5), Recognition Threshold Necessary for a Yes
Response (11, ranging from 0 to 1 in steps of 0.1), and Lower
Boundary Necessary for Recall (3, ranging from 0 to 1 in steps
of 0.5). This resulted in a total of 165 simulated conditions, each
of which was replicated 50 times. To retrieve for recall, the first
item in each pair was correlated with the composite memory
trace, and the lexical item that provided the best match to the
retrieved Hem was said to be what was recalled. If it was the
second hern in the pair, recall was said to be correct. To recog-
nize, the probe (second item in each pair) was dotted with the
trace. If the degree of match exceeded threshold (which varied
as just mentioned) then a hit was said to have occurred. Contin-
gency tables were constructed, as previously reported for
CHARM, and the TODAM-predicted relation between recog-
nition and recall was ascertained from them.

The results are shown in Figure 25, top panel. As can be seen,
independence between recognition and the recognizability of
recallable items was the result. Two other simulation series were
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conducted with TODAM to further investigate changes that in
CHARM had produced exceptions to the function in the direc-
tion of overdependence.

The first case of overdependence in CHARM resulted when
very few features were used in the vectors. Accordingly, I ran the
165 simulated conditions again with a different initial random-
ization but with only 7 features in the item vectors. The results
are shown in the center panel of Figure 25. As can be seen, the
data were more dispersed in this series than in the series in
which 63 features had been used, but independence still re-
sulted. About half the points in this simulation series (as in the
preceding one) were in negative dependence regions of the
space—regions in which human data almost never appear.

Finally, the similarity between the cue and the target was a
factor in CHARM that caused overdependence. Thus, I wanted
to see if high cue-target similarity would result in a dependence
relation in TODAM. I immediately took this to the limit of
having the cues and targets be identical to one another—maxi-
mum similarity. I also used only seven features in this simula-
tions series, because this produced the maximum dependence
relation in CHARM. As can be seen from the bottom panel of
Figure 25, this manipulation did increase the level of recogni-
tion. The hit rate tends to be higher than .65 rather than .40, as
was found in the previous two TODAM simulations. The rea-
son this manipulation increased the hit rate is that when both
the A terms and the B terms are identical, it is the same as
adding the A terms in twice. Thus, the dot product between the
probe A and these two A terms is higher than between the
probe and only a single A term, and the probability of exceed-
ing a given threshold is accordingly increased.

The similarity manipulation did not result in dependence
between recognition and the recognizability of recallable items.
They were still quite independent, and still quite unlike the
pattern shown by CHARM or shown by human subjects. It
appears, from these simulation results, that the operations for
encoding and retrieval need be the same in recall and in recogni-
tion and need involve the retrieval of a representation in recogni-
tion as well as in recall for the recognition-failure dependence
to emerge.
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Information Storage in a Single Composite Trace

The assumption investigated in this simulation was compos-
ite storage of the associations that underlie both recognition
and recall in the same memory trace. The idea of a composite
memory trace is one of the central or core assumptions in dis-
tributed models. In these simulations, I relax this assumption

Figure 25. Simulation results from Murdoch (1982) TODAM model
for recognition and recall. (This model does not use representational
retrieval in recognition. The top panel shows the results with 63-feature
vectors; the center panel, the results with 7-feature vectors. The bottom
panel uses 7-feature vectors and maximal similarity, Le, identity, be-
tween the A and B term in each pair. From "A theory for the storage
and retrieval of item and associative information," by B. a Murdock,
mi, Psychological Review, 89,609-626. Copyright 1982 by the Ameri-
can Psychological Association, Inc. Adapted by permission.)
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Figure 26. The proportion of recallable items that were recognized as
a function of recognition (a) with a single composite trace and (b) with
separate traces for recognition and recall. (From Simulation Series 10.)

and investigate the repercussions. All other assumptions were
maintained. Thus, in the separate trace conditions the inter-
item convolutions underlying recall were stored in one trace,
whereas the autoassociaiions underlying recognition were
stored in another. In the single composite trace conditions all
associations were stored in the same composite trace. The same
items, decision processes, number of features, operations of
convolution and correlation, and so on were used for both the
single composite trace and separate trace simulations. Because
the greatest dependency had been found previously with few
features in the vectors, I used only 15 features here. The items
were unrelated. Recognition criterion was varied, and each
data point is based on 3,000 observations.

As is shown in Figure 26, with the single composite trace for
both tasks the familiar recognition-failure dependence relation
resulted. However, when the information underlying recogni-
tion was stored in a trace separate from that underlying recall
the result was complete independence.

Discussion

The results of retrieval under the usual composite-trace as-
sumption in the model, whereby the associations from both the
interitem associations (primarily responsible for recall) and the
autoassociations (primarily responsible for recognition) are
stored together in the same trace, are given by the following
equations, for a single pair of items. When A and B are the
to-be-remembered pair, the trace is

= A.B + .5(A*A) + .S(B*B).

,™* = B#[(A*B) + .5(B*B) + .5(A«A)]

= B#(A.B) + .SB#(B»B) + .5B#(A*A)

= A + .5(28) + 0

= A + B + 0. [from equation 6]

So, the target B is retrieved, but there is an additional signal
term A that is also retrieved.

When recall is tested, the cue is A (rather than B, as in recog-
nition). The result of retrieval is

RnoaconpHte = A#[(A.B) + .5(A*A) + .5(B*B)]

= A#(A*B) + .5A#(A«A) + .5A#(B*B)

= B + .5(2A) + 0

= B + A + 0. [from equation 6]

Once again the target item B is retrieved, but an additional
signal term A is also retrieved. It is this additional signal term
that results from composite storage of both the interitem associ-
ations and the autoassociation in the same trace that is at the
heart of the recognition-failure correlation shown in the model.

To illustrate the importance of this term consider the equa-
tions for storage and retrieval that result under the separate
trace assumption, in which independence obtained, as the simu-
lations showed. For recognition, the trace (for a single event) is

* recognition, separate = .5(A*A) + .5(B»B).

When the recognition of the target B is tested by probing with
B, the result retrieved from the trace is

When the probe for recognition is given, as before, it is corre-
lated with the trace:

Hrecogr.l«on.«p«.K = B#[.5(A.A) + .5(8 *B)]

= .5B#(A.A) + .5B#(B»B)

= 0 + .5(28)

= B.

B is produced, but no A term is simultaneously produced.
The separate trace for recall is

T = CA *R\* recall, separate */* * *•/*

When the cue for recall, A, is correlated with the trace, the
following is the result:

Rrecdl,«praK = A#(A*B)

= B.

Again, the to-be-recalled item, B, is produced, but with no A
term. This is the critical difference between the result of re-
trieval in the composite versus the separate storage conditions.

In the single composite trace situation, if the items are unre-
lated, this (spurious) A term has an expected correlation with
the target B of zero. Why, then, should it produce a positive
correlation between recognition and the recognizability of re-
callable words? Although the expected correlation between the
correct item B and the A term is zero, the actual correlation
varies randomly around zero. If the correlation between B and
A is above zero, then the presence of A will bolster the reso-
nance of B. If there is a negative correlation between A and B,
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then the presence of A will decrease the resonance of the target
B. On any particular test, however, regardless of whether the
actual value is above or below zero for any particular A, it will
have the same effect in both recall and in recognition (because
it is the identical term that is retrieved in both cases). Hence, it
causes a correlation between recall and recognition.

Why Is There More Dependency With Fewer Features?

As noted earlier, even with unrelated items, as long as the
information underlying both recognition and recall is stored in
the same composite trace, the nontarget A term corresponding
to the cue in recall is produced along with the target B term. It is
this A term that accounts for the dependency between recogni-
tion and recall. In Simulation Series 8, it was found that the
fewer features there are in the item vectors, the greater is this
dependency. Overdependency with few features corresponds to
the data from three studies, showing that impoverished stimuli
rotely encoded produced overdependence. The reason for the
relation between the number of features and the extent of de-
pendency has yet to be explained.

As noted earlier, the expected correlation between the A
items and the target B items is zero. However, the amount of
deviation from the expected value of zero will depend on the
sample size. Sample size, in this case, is the number of features
in the vectors. With a small sample size, the deviation from the
expected value will be greater; whereas with a large sample size
a closer approximation to the expected value of zero correlation
will be found.

A familiar example of such an effect of sample size is the
hospital problem given by Tversky and Kahneman (1982). In
this problem, subjects are asked whether a small hospital having
few births per day or a large hospital having many births per day
would have more days on which the proportion of boys is
greater than 60%. The answer, known to all psychologists but
not to most other people, is that the small hospital can expect
more such days because there is greater variability from the
expected value with a smaller sample. Similarly, this situation,
although the expected correlation between A and B is zero, the
divergences from this mean on any particular occasion are
larger with a small number of randomly assigned features con-
tributing to the correlation than with a large number. Because
any divergence, whether positive or negative, has the same im-
pact on recall and recognition (helping or hurting them both)
and causes the correlation between these two, one would expect
and find that when these divergences are greater the depen-
dency between the two memory tasks is also greater.1

Conclusion

The holographic model of human episodic memory pre-
sented here, though obviously oversimplified, produces results
that correspond well to the experimental data in the recogni-
tion-failure paradigm. Despite large changes in the levels of
recognition and recall that result through various manipula-
tions in the model the simulated data, like the human data,
showed dependence corresponding to the TuMng-Wiseman
function. This dependence occurred even when the items were
a priori unrelated to one another as long as the information

underlying both recall and recognition was stored in a single
composite trace, and so long as both recognition and recall
involved representational retrieval. Under these conditions, not
only did the cue in recall retrieve the target hern from memory,
but it also simultaneously retrieved itself. This cue retrieval in
recall is nonoptimal—a distortion or mistake that is produced
unavoidably from the composite method of storage. Similarly,
the probe in recognition retrieved not only the appropriate tar-
get term from memory, but also the item that had been asso-
ciated with it. Interestingly, the superimposed retrieval of the
nontarget half of the association in both recognition and recall
accounted not only for the generally found Tulving-Wiseman
recognition-failure function but also for the exceptions to it.

The results of this research are most surprising and exciting
because they stem directly from constructs in the distributed
model that are at its core. As a psychologist interested in under-
standing the workings of human memory, one might ask, with
some justification, why one should bother with all the compli-
cated micro mechanisms of neural models. Do they generate
new predictions, elucidate poorly understood phenomena, or
lead to a new way of thinking about human memory? Although
the data are not all in, of course, these distributed models do
seem to have consequences for our understanding of human
memory In contrast to symbolic models and computer meta-
phors that view memory representations as static, in distrib-
uted models the representations themselves are continually
changing and altering one another. These models, then, allow
us an analytical method for thinking about human cognition as
dynamic at the level of the representations themselves. They
allow us not only to ask the traditional questions of whether a
certain item is recalled and how quickly but also to look for
transformational changes in content. We are led to ask what is
retrieved? Distortions and alterations in the content of memory
events can be explored by comparing model predictions with

1 A reviewer recommended that the model be fitted to the data. This
was not done for two reasons. First, it is not clear whether the appro-
priate data are the raw data, as shown in Figure 1 of this article and as
conform reasonably well to the Tulving-Wiseman equation, or the ho-
mogenized data (as shown in the right panel of Figure 5). The method
of homogenization purges item- and subject-selection effects. This
seems appropriate because neither of these factors are of theoretical
interest. If the homogenized data are the appropriate comparison,
then a model should show consistent dependency, but slightly less de-
pendency than the Tulving-Wiseman equation predicts. The simula-
tion results that were produced (when the number of features used in
the model was 63 or 35) showed consistent dependency of magnitude a
hair less than that given by the Tulving-Wiseman equation. So if one
were willing to argue that the corrected data are the "correct" data one
could claim that the model fits well. Even so, as was shown, the degree
of dependency varies as a function of the number of features in the
vectors. Thus, even if the initial simulations (in which this number was
chosen arbitrarily) did not fit, it would be trivial, and tedious, to redo
the simulations with a better chosen feature number. The contribution
of the model is not in its precise fit to the data, which in this context is
meaningless, but rather in the invar iance over a wide variety of condi-
tions in which invariance is produced, the overdependence under con-
ditions in which overdependence is produced, the explanation of the
causes underlying such results, and the new predictions that it pro-
vides.
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human data. These distortions sometimes appear in strange
garb—here, in the recognition-failure function and its excep-
tions.

Van Gelder (1989) has noted that since the late 1970s,

the broad concept of distributed representation has been granted
an important place in the developing discipline of cognitive
science. It forms a landmark around which there clusters a variety
of issues and questions, matters which can only be ignored to the
general detriment of one's understanding of the whole area. Yet
surprisingly, there has never been any attempt to understand in a
comprehensive way the nature and properties of distribution.
(P. 7)

When it comes to understanding the implications of the proper-
ties of distributed representations as they might play themselves
out in human data or task dependencies, we may sometimes be
surprised. At the outset of this research, I did not think that the
model would produce the recognition-failure function. I was
agnostic about the reasons for the function but certainly did not
think it had much or anything to do with composite distributed-
memory storage. When simulations showed that the holo-
graphic model did produce the function, I thought that all
mechanistic models would do so (and so was surprised to find
that they did not). Further analysis of the model revealed that
the distributed properties were in fact important in producing
the relation, but this was not obvious at first, nor were these
properties in any sense designed to have this effect. The result
was unexpected. It seems likely that the "understanding in a
comprehensive way" that Van Gelder sought, particularly when
referring to properties that may have implications for (and, it is
hoped, enhance) the understanding of human cognition, is lia-
ble to be an extended adventure.
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